biweeklybudget Documentation
Release 0.4.0

Jason Antman

Aug 22, 2017

Contents

Overview 3
[.1 TImportant Warning 0 it e e e e e e e e e e e e e e e 3
1.2 Main Features e e e e e e e 3
Requirements 5
Installation 7
License 9
Contents 11
5.1 Screenshots e e e 11
5.1.1 IndexPage e 11

5.1.2 PayPeriods View 12

5.1.3 Single Pay Period View e 12

5.4 Accounts VIBW o o oo e e e e e e e e e 13

5.1.5 AccountDetails e 13

51,6 OFX Transactions v v v v v vttt e e e e e e e e e e e e e e e 14

5.1.7 Transactions VIEW 0o e e e e e e e e e e 14

5.1.8 Transaction Detail 15

5.1.9 Budgets e e e e e e e e e e 15
5.1.10 Single Budget View o o e e e e e e e e e 16
5.1.11 Scheduled Transactions v v vt i i it e e e e e e e e e 16
5.1.12 Specific Date Scheduled Transaction e 17
5.1.13 Monthly Scheduled Transaction 17
5.1.14 Number Per-Period Scheduled Transactions 18
5.1.15 Reconcile Transactions with OFX 19
5.1.16 Drag-and-Drop Reconciling L 20
S.LI7 FuelLog. o o e e 21
5.1.18 Project Tracking e 22
5.1.19 Projects - Bill of Materials 22
5.1.20 Credit Card Payoff Calculations i ittt 23

5.2 Getting Started e e e e e e e e e e e 23
52.1 Requirements e e e e e 23

5.22 Installationo L e e e e e e e e e e e 24

523 Configuration e e e e e e e 24
5.23.1 SettingsModule e e e 24

53

54

5.5

5.6

5.7

5.8

59

5.10

524 USAZE . . v v v e e e e e e e e e e e e e e 25
5241 Setup 25
5242 Flask oo e e e 25
5.2.43 Command Line Entrypoints and Scripts 25

Docker e 25

5.3.1 Environment Variable File 26

5.3.2 Containerized MySQL Example e 26

533 Host-Local MySQL Example e 26

5.3.4 Settings Module Example Lo 27

535 NoteonLocales e 27

5.3.6 Running ofxgetterin Docker e e 27

Flask Application o o i i e e e e e e e e e e e e e 28

541 Running e e e e e e e 28

542 Security L. e e e 28

OFX Transaction Downloading e 28

5.5.1 Important Note on Transaction Downloading 28

5.5.2 ofxgetter entrypoint e e e e e e e e e e e e e e 29

5.53 VaultSetup L e e e e e 29

5.54 Configuring Accounts for Downloading with ofxclient 29

5.5.5 Configuring Accounts for Downloading with Selenium 30

Getting Help o o L L e 32

5.6.1 Bugsand Feature Requests i e e e 32

Development e e e e e e e e 32

57.1 Guidelines e e e 32

5772 LoadingData 32

573 Testingo e e 32
5731 UnitTestso i e e e 33
5.7.32 Integration Tests o .. e e e e e e e 33
5.7.3.3 Acceptance Tests 33

5774 Alembic DB Migrations e 33

5.7.5 Database Debugging 33

577.6 DockerImage Build 34

5777 Frontend /UL 34

577.8 Release Checklist 34

Changelog e e 35

581 0.4.0(2017-08-22) L e e 35

582 03.0Q2017-07-09) 35

583 020 Q2017-07-02) 35

584 0.1.2(2017-05-28) 36

5.85 0.1 (2017-05-20) o o o e e 36

58.6 0.1.0 (2017-05-07) . .« o v v i e e 37

biweeklybudget L 37

5.9.1 biweeklybudget package e e e 37
5.9.1.1 Subpackages e e e e e e e 37
59.1.2 Submodules 52

UlJavaScript Docs 0 o e 73

5.00.1 Files . . . o oo o o e e 73
5.10.1.1 jsdoc.accounts_modal e 73
5.10.1.2 jsdoc.bom_items e e e e e e e e e e e 74
5.10.1.3 jsdoc.bom_items_modal L. 74
5.10.1.4 jsdoc.budget_transfer modal 0oL 74
5.10.1.5 jsdoc.budgets_modal 74
5.10.1.6 jsdoc.credit_payoffs L 75

5.10.1.7 3sdoc.CuStom o i il e e e e e e e e 75

5.10.1.8 jsdoc.formBuilder 76
5.10.1.9 jsdoc.forms e e e e e e 79
5.10.1.10 jsdoc.fuel L 80
S5.00.1.11 jsdoc.ofX « . . o o e e 81
5.10.1.12 jsdoc.payperiod_modal 81
5.10.1.13 3sdOC.projects v v i i e e e e e e e e e e e e e e e e e 82
5.10.1.14 jsdoc.reconcile L L e e e e e 82
5.10.1.15 jsdoc.reconcile_modalo oL 84
5.10.1.16 jsdoc.scheduled_modal 85
5.10.1.17 jsdoc.transactions_modalo 85
6 Indices and tables 87
Python Module Index 89

biweeklybudget Documentation, Release 0.4.0

Responsive Flask/SQLAIchemy personal finance app, specifically for biweekly budgeting.
For full documentation, see http://biweeklybudget.readthedocs.io/en/latest/
For screenshots, see http://biweeklybudget.readthedocs.io/en/latest/screenshots.html

For development activity, see https://waffle.io/jantman/biweeklybudget

Contents 1

http://biweeklybudget.readthedocs.io/en/latest/
http://biweeklybudget.readthedocs.io/en/latest/screenshots.html
https://waffle.io/jantman/biweeklybudget

biweeklybudget Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Overview

biweeklybudget is a responsive (mobile-friendly) Flask/SQLAlchemy personal finance application, specifically tar-
geted at budgeting on a biweekly basis. This is a personal project of mine, and really only intended for my personal
use. If you find it helpful, great! But this is provided as-is; I’ll happily accept pull requests if they don’t mess things
up for me, but I don’t intend on working any feature requests or bug reports at this time. Sorry.

The main motivation for writing this is that I get paid every other Friday, and have for almost all of my professional
life. T also essentially live paycheck-to-paycheck; what savings I have is earmarked for specific purposes, so I budget
in periods identical to my pay periods. No existing financial software that I know of handles this, and many of them
have thousands of Google results of people asking for it; almost everything existing budgets on calendar months. I
spent many years using Google Sheets and a handful of scripts to template out budgets and reconcile transactions, but
I decided it’s time to just bite the bullet and write something that isn’t a pain.

Intended Audience: This is decidedly not an end-user application. You should be familiar with Python/Flask/MySQL.
If you’re going to use the automatic transaction download functionality, you should be familiar with Hashicorp Vault
and how to run a reasonably secure installation of it. I personally don’t recommend running this on anything other
than your own computer that you physically control, given the sensitivity of the information. I also don’t recommend
making the application available to anything other than localhost, but if you do, you need to be aware of the security
implications. This application is not designed to be accessible in any way to anyone other than authorized users (i.e.
if you just serve it over the web, someone will get your account numbers, or worse).

Important Warning

This software should be considered alpha quality at best. At this point, I can’t even say that I'm 100% confident it is
mathematically correct, balances are right, all scheduled transactions will show up in the right places, etc. I'm going
to be testing it for my own purposes, and comparing it against my manual calculations. Until further notice, if you
decide to use this, please double-check everything produced by it before relying on its output.

Main Features

* Budgeting on a biweekly (fortnightly; every other week) basis, for those of us who are paid that way.

https://www.vaultproject.io/

biweeklybudget Documentation, Release 0.4.0

¢ Periodic (per-pay-period) or standing budgets.

» Optional automatic downloading of transactions/statements from your financial institutions and reconciling
transactions (bank, credit, and investment accounts).

* Scheduled transactions - specific date or recurring (date-of-month, or number of times per pay period).
* Tracking of vehicle fuel fills (fuel log) and graphing of fuel economy.

* Cost tracking for multiple projects, including bills-of-materials for them. Optional synchronization from Ama-
zon Wishlists to projects.

¢ Calculation of estimated credit card payoff amount and time, with configurable payment methods, payment
increases on specific dates, and additional payments on specific dates.

4 Chapter 1. Overview

CHAPTER 2

Requirements

Note: Alternatively, biweeklybudget is also distributed as a Docker container. Using the dockerized version will
eliminate all of these dependencies aside from MySQL (which you can run in another container) and Vault (if you
choose to take advantage of the OFX downloading), which you can also run in another container.

* Python 2.7 or 3.3+ (currently tested with 2.7, 3.3, 3.4, 3.5, 3.6 and developed with 3.6)

* Python VirtualEnv and pip (recommended installation method; your OS/distribution should have packages for
these)

* Git, to install certain upstream dependencies.

* MySQL, or a compatible database (e.g. MariaDB). biweeklybudget uses SQLAlchemy for database abstraction,
but currently specifies some MySQL-specific options, and is only tested with MySQL.

* To use the automated OFX transaction downloading functionality:

— A running, reachable instance of Hashicorp Vault with your financial institution web credentials stored in
it.

— PhantomJS for downloading transaction data from institutions that do not support OFX remote access
(“Direct Connect”).

http://biweeklybudget.readthedocs.io/en/latest/flask_app.html
http://www.virtualenv.org/
https://mariadb.org/
http://www.sqlalchemy.org/
https://www.vaultproject.io/
http://phantomjs.org/

biweeklybudget Documentation, Release 0.4.0

6 Chapter 2. Requirements

CHAPTER 3

Installation

It’s recommended that you install into a virtual environment (virtualenv / venv). See the virtualenv usage documenta-
tion for information on how to create a venv.

This app is developed against Python 3.6, but should work back to 2.7. It does not support Python3 < 3.3.

Please note that, at the moment, two dependencies are installed via git in order to make use of un-merged pull requests
that fix bugs; since

git clone https://github.com/Jjantman/biweeklybudget.git && cd biweeklybudget
virtualenv --python=python3.6

source bin/activate

pip install -r requirements.txt

python setup.py develop

http://www.virtualenv.org/en/latest/
http://www.virtualenv.org/en/latest/

biweeklybudget Documentation, Release 0.4.0

8 Chapter 3. Installation

CHAPTER 4

License

biweeklybudget itself is licensed under the GNU Affero General Public License, version 3. This is specifically intended
to extend to anyone who uses the software remotely over a network, the same rights as those who download and
install it locally. biweeklybudget makes use of various third party software, especially in the UI and frontend, that is
distributed under other licenses. Please see biweeklybudget/flaskapp/static in the source tree for further
information.

https://www.gnu.org/licenses/agpl-3.0.en.html

biweeklybudget Documentation, Release 0.4.0

10 Chapter 4. License

CHAPTER B

Contents

Screenshots

Index Page

& Farcpa weh ek A Wises ACDESREL
n: - VR ol GF ETrassecTens
' . [P e erea— i Bk s
— Freee Balarae wresrarcied (iHerene
e —_— B oo TEE LT e Hiz.7mm 0
i w Tawilaie B 13020 PR
&
".
5 Cresia Cusi
L L L
Boopuri Balanw Bouilable Bawil - lnre
boke = VNI e BLEMTHA BRIAT]
A2 450 83 v e L L1
archrmy Bakpeis Py Povsmbi e | e gy gl
F—— ST p— [——— B e b e
Wygat Cwrrest Balenry
P HA 0711 doweerl AL SNRES AR 3 Jr— [r—
- 83 0 T LT LETTRN == e
3 FEBLE 108 H.auE T
b0 Rl M
A A
FERL 103
71013 R M
3 R T i858 61
FEM 103

Main landing page.

11

biweeklybudget Documentation, Release 0.4.0

Pay Periods View

Summary of previous,

Pay Penody - RivesklyBusinget

current and upcoming pay periods,

plus date selector to find a pay period.

& H IR ety wih itake dats. Vi ACDOSROL
B Py P
Wi Lare o bl OF XTTRA RS
= $2,000.56 $2,011.67 $2,011.67
= AR
e e i P
© ot
prees] Rl
P]
A] T [ETIRE] .
- - e e s DAL by TOLS Aeagant ALy
B U TS e B B e W TH Y B B e TG W T T B
. i e . , ST
18 1% 30 20 2 M B I 1IN N3N N D NN
Ham sl HaLs oM I M MM MM M HMA I MMM BN
v P s
§334 0 Eo) f2.011.87
[EETY-) waa [ELiSE T
Single Pay Period View
Shows a pay period (current in this example) balances (income, allocated, spent,
remaining), budgets and transactions (previous/manually-entered and scheduled).
ML TAOT-F1 b 2017.-08-00 Pay Pericd - DiweskiyBudget
* IR ety wih itake dats. Vi ACDOSROL
s b e ek OF ETrassROtke
r o Firrmaeor sy M e
- F——— pppp— ——— —— S——
........... §2.01147 1000 38 STALLETY STALLETY ER000aT
- $2,345.67 $345.11 $333.35 $2,000.56
Lok . e i ated e PR
- '
T e]] rarnnct<os - R
[PV AR PSP S R R R R P - - PP -
O e — Priad | H L0 D sann LREIRS] #LL13 HITOIE 133 IF L] i
TP P p— " .
T malarce
Warwbeg #1284 72
402 18

12

Chapter 5. Contents

biweeklybudget Documentation, Release 0.4.0

Accounts View

IR ety wih itake dats. Vi ACDOSROL

L U e e O X TTRARRTR

Ppe——
8 b et D
I pre— ——— o— p—
I T —— P prrpps
. prreprp— Py preere
i
Bt Loy =t o TR
pr— —— p— o~ R —
e prey— pryeym YT pree
PPy preew- Py e wn
it b oo [T
pre— .

Account Details

Bt Account 1

& Reconc i Fersactom?

= dlnr

Details of a single account.

5.1. Screenshots 13

biweeklybudget Documentation, Release 0.4.0

OFX Transactions

Shows transactions imported from OFX statements.

Transactions View

Shows all manually-entered transactions.

Ty L

Uares oawibed OF KTrassectias

[Py e sl
13aRy AL
ER 1
Anar-re kRS
1A END D
7 430000
£ 0-ar-1r s
WATATIT BALEE
(BRI +
1] T RiLES
3T ATIT ERE]
Tann hmars rzasmt
wrery v

1R Wi REOERTL

Unresonibed OF KTrasssctiss

Eane . mr Desripte
- abiLaa
ar-ae LEER DD
a7t nn
Eane AErrars DR
----- 1%l

anin
Trp Harme Hera
Ll iLh e]
P n
et T
ri Cirdin Paryrraet - Thaasi o
b
i
ot 2
bt 1
- Spr et S A
Trpe hare Hema
Fres
et wasget Schdubadt
ccasant waget Schdubadt

14

Chapter 5. Contents

D il b G

Desorigtian T

Rusdgeted Amaaist

biweeklybudget Documentation, Release 0.4.0

Transaction Detail

[t Transaction 2

Transaction detail modal to view and edit a transaction.

'l Niwe udget

" Fomc ey wih ake dats. Vi ACTSSRON
oy T— & Umreeaibed OF KTTEs LRt

[
— - — ———
Pp— — -
& Schud s - E Bia 0

e - 234 08
- a

L Peradic § usctien (5 WAyl
i
e -

P

Rt Wurigel Turrerd Balars e

- : ey

L] Harding) inactive (8 L]

List all budgets

5.1. Screenshots 15

biweeklybudget Documentation, Release 0.4.0

Single Budget View

Budget detail modal to view and edit a budget.

Scheduled Transactions

i Faduled Trarascticny. - Diw Audy
o IR ey wih iake i Vi ACOOSROL
oy T— b e ok 6 KTras s,
how 1z s
AT rype
- n
i o il
o e
o Ty
O Semrdued
L dair
& Pl Ly
= et g
e "
: w iy
L= dain
0 e 4
Actbeat Brpe

Showing 1 %0 @ of & enirim

List all scheduled transactions (active and inactive).

e 4
Aacurrence EEgrr— Bescrigtion
1 P i -l ir
an wan
117080 s
3 puar i T e
ar JEEEENY m
a8z freeem sTa
e —— amaumn Bescrigtion

16

Chapter 5. Contents

biweeklybudget Documentation, Release 0.4.0

Specific Date Scheduled Transaction

[t Schaduled Tranaascton]

Deprprion

Ty T MesPep T Per Pevedl @ [Dale

Dy of Hanth

Byl Dl

B mirssal

Scheduled transactions can occur one-time on a single specific date.
Monthly Scheduled Transaction

[t Scheduled Tramaacton 7

Scheduled transactions can occur monthly on a given date.

5.1. Screenshots 17

biweeklybudget Documentation, Release 0.4.0

Number Per-Period Scheduled Transactions

Scheduled transactions can occur a given number of times per

[t Schaduled Tranaacton 3

D rpe
15

Ty MesPdy @ Per Peved © Dale

Dy of Hanth

pay

period.

18 Chapter 5. Contents

biweeklybudget Documentation, Release 0.4.0

Reconcile Transactions with OFX

OFX Transactions reported by financial institutions can be marked as reconciled with a corresponding Transaction.

- Transsrtiony

Bypa: st

5.1. Screenshots

19

biweeklybudget Documentation, Release 0.4.0

Drag-and-Drop Reconciling

To reconcile an OFX transaction with a Transaction, just drag and drop.
- Transsrtiony Orw
— ¥ T Busdges * T e
n —
il R gt " e Pypa: Crest

o L1 [s Frps.

i —
- CPLERTY et Typa
: o ‘ P —

et Pypa:

' o -

. P —

¥ [T Trpe

' st -

: P —

20 Chapter 5. Contents

biweeklybudget Documentation, Release 0.4.0

Fuel Log

Vehicle fuel log and fuel economy tracking.

s AN Wik ALDEEREL

11 usrecenibed OF KTrasseotions

MM Pl By

Datn wehcle | OoTier i Trareaied (epm
=7 b
T vekd 1 5 11
ak-i
T -
ab-i
7 vebg £] L]
T -] 0
a-bi
ot Vekike Oulisr B Traried (Beue
L8 el
ha 2
w Haree

M, Traresiesd
sk, |

Samrt Puml
Ll

RRast Fumd
Lawval

P P

Urd Fussd Lacation
Leuel
o u
[
e ¥ 0
o a
Dral Praes Laatian

5.1. Screenshots

21

biweeklybudget Documentation, Release 0.4.0

Project Tracking

Track projects and their cost.
Projects - Bill of Materials

Track individual items/materials for projects.

$77.77

1605 Wik ALDSSREL

10 L vl el O X TTas AR OThe

$2,546.89

Todnl Cond - Active Progecis

s el Cast Barvresirire Casl Railhwm?
BLian I #TTIR .
0 ot
K (I D |t
Twlal Cast Barerasrira Canl Railiwn

F B gty with Wk date. Ve ACOESREL

11 e erelibed OF KTTasseiTien

$77.77 $2,546.80
Bprrgrang o
— — oo o
2223 i e
LA TR ity T (ISEEEY (VR RN
— . - -
haeng 100 1 of et

22

Chapter 5. Contents

Ty
Hale
Frige Wmw
BrariPan
T T
[T

Helew

L] Wl

Flerer It

LTSN

biweeklybudget Documentation, Release 0.4.0

Credit Card Payoff Calculations

Credit card payoff calculations based on a variety of payment methods, with con-
figurable payment increases over time or one-time additional payment amounts.
s =
= L

(R ———

F——

— P—— SS— —

- s " -

e —

Getting Started

Requirements

Note: Alternatively, biweeklybudget is also distributed as a Docker container. Using the dockerized version will
eliminate all of these dependencies aside from MySQL and Vault (the latter only if you choose to take advantage of
the OFX downloading), both of which you can also run in containers.

5.2. Getting Started 23

biweeklybudget Documentation, Release 0.4.0

* Python 2.7 or 3.3+ (currently tested with 2.7, 3.3, 3.4, 3.5, 3.6 and developed with 3.6)

* Python VirtualEnv and pip (recommended installation method; your OS/distribution should have packages for
these)

* Git, to install certain upstream dependencies.

* MySQL, or a compatible database (e.g. MariaDB). biweeklybudget uses SQLAlchemy for database abstraction,
but currently specifies some MySQL-specific options, and is only tested with MySQL.

* To use the automated OFX transaction downloading functionality:
— A running, reachable instance of Hashicorp Vault with your financial institution web credentials stored in
it.
— PhantomJS for downloading transaction data from institutions that do not support OFX remote access
(“Direct Connect”).

Installation

It’s recommended that you install into a virtual environment (virtualenv / venv). See the virtualenv usage documenta-
tion for information on how to create a venv.

This app is developed against Python 3.6, but should work back to 2.7. It does not support Python3 < 3.3.

Please note that, at the moment, one dependency is installed via git in order to make use of an un-merged pull request
that fixes a bug; since installation doesn’t support specifying git dependencies in setup . py, you must install with
requirements.txt directly:

git clone https://github.com/jantman/biweeklybudget.git && cd biweeklybudget
virtualenv —--python=python3.6

source bin/activate

pip install -r requirements.txt

python setup.py develop

Configuration

biweeklybudget can take its configuration settings via either constants defined in a Python module or environment
variables. Configuration in environment variables always overrides configuration from the settings module.

Settings Module

biweeklybudget.settings imports all globals/constants from a module defined in the SETTINGS_MODULE
environment variable. The recommended way to configure this is to create your own separate Python package for
customization (either in a private git repository, or just in a directory on your computer) and install this package into
the same virtualenv as biweeklybudget. You then set the SETTINGS_MODULE environment variable to the Python
module/import path of this module (i.e. the dotted path, like packagename .modulename).

Once you’ve created the customization package, you can install it in the virtualenv with pip install -e <git
URL> (if it is kept in a git repository) or pip install -e <local path>.

This customization package can also be used for Loading Data during development, or implementing Custom OFX
Downloading via Selenium. It is the recommended configuration method if you need to include more logic than simply
defining static configuration settings.

24 Chapter 5. Contents

http://www.virtualenv.org/
https://mariadb.org/
http://www.sqlalchemy.org/
https://www.vaultproject.io/
http://phantomjs.org/
http://www.virtualenv.org/en/latest/
http://www.virtualenv.org/en/latest/

biweeklybudget Documentation, Release 0.4.0

Environment Variables
Every configuration setting can also be specified by setting an environment variable with the same name; these will
override any settings defined in a SETTINGS_MODULE, if specified. Note that some environment variables require

specific formatting of their values; see the settings module documentation for a list of these variables and
the required formats.

Usage

Setup

source bin/activate
export SETTINGS MODULE=<settings module>

It’s recommended that you create an alias to do this for you. Alternatively, instead of setting SETTINGS_MODULE,
you can export the required environment variables (see above).

Flask

For information on the Flask application, see Flask App <flask_app>.

Command Line Entrypoints and Scripts
biweeklybudget provides the following setuptools entrypoints (command-line script wrappers in bin/). First setup
your environment according to the instructions above.

* bin/db_tester.py - Skeleton of a script that connects to and inits the DB. Edit this to use for one-off DB
work. To get an interactive session, use python —-i bin/db_tester.py.

* loaddata - Entrypoint for dropping all existing data and loading test fixture data, or your base data. This is
an awful, manual hack right now.

* ofxbackfiller - Entrypoint to backfill OFX Statements to DB from disk.

* ofxgetter - Entrypoint to download OFX Statements for one or all accounts, save to disk, and load to DB.
See OFX.

* wishlist2project - For any projects with “Notes” fields matching an Amazon wishlist URL of a public
wishlist ("https://www.amazon.com/gp/registry/wishlist/), synchronize the wishlist items to
the project. Requires wishlist==0.1.2.

Docker

Biweeklybudget is also distributed as a docker image, to make it easier to run without installing as many Requirements.

You can pull the latest version of the image with docker pull jantman/biweeklybudget:latest,ora
specific release version X.Y.Z with docker pull jantman/biweeklybudget:X.Y.Z.

The only dependencies for a Docker installation are:
* MySQL, which can be run via Docker (MariaDB recommended) or local on the host

* Vault, if you wish to use the OFX downloading feature, which can also be run via Docker

5.3. Docker 25

https://hub.docker.com/r/jantman/biweeklybudget/
https://hub.docker.com/_/mariadb/
https://hub.docker.com/_/vault/

biweeklybudget Documentation, Release 0.4.0

Important Note: If you run MySQL and/or Vault in containers, please make sure that their data is backed up and will
not be removed.

The image runs with the tini init wrapper and uses gunicorn under Python 3.6 to serve the web UI, exposed on port 80.
Note that, while it runs with 4 worker threads, there is no HTTP proxy in front of Gunicorn and this image is intended
for local network use by a single user/client.

For ease of running, the image defaults the SETTINGS_MODULE environment variable to biweeklybudget.
settings_example. This allows leveraging the environment variable configuration overrides so that you need
only specify configuration options that you want to override from settings_example.py.

For ease of running, it’s highly recommended that you put your configuration in a Docker-readable environment
variables file.

Environment Variable File

In the following examples, we reference the following environment variable file. It will override settings from set-
tings_example.py as needed; specifically, we need to override the database connection string, pay period start date and
reconcile begin date. In the examples below, we would save this as biweeklybudget .env:

DB_CONNSTRING=mysqgl+pymysql://USERNAME : PASSWORD@HOST : PORT /DBNAME? charset=ut f8mb4
PAY_PERIOD_START_DATE=2017-03-28
RECONCILE_BEGIN_DATE=2017-02-15

Containerized MySQL Example

This assumes that you already have a MySQL database container running with the container name “mysql” and ex-
posing port 3306, and that we want the biweeklybudget web UI served on host port 8080:

In our biweeklybudget . env, we would specify the database connection string for the “mysql” container:

’DB_CONNSTRING=mysql+pymysql://USERNAME:PASSWORD@mysql:3306/DBNAME?charset=utf8mb4

And then run biweeklybudget:

docker run —--name biweeklybudget --env-file biweeklybudget.env \
-p 8080:80 --link mysgl jantman/biweeklybudget:latest

Host-Local MySQL Example

It is also possible to use a MySQL server on the physical (Docker) host system. To do so, you’ll need to know the
host system’s IP address. On Linux when using the default “bridge” Docker networking mode, this will coorespond
to a docker0 interface on the host system. The Docker documentation on adding entries to the Container’s hosts file
provides a helpful snippet for this (on my systems, this resultsin 172.17.0.1):

ip -4 addr show scope global dev dockerO | grep inet | awk '{print $2}' | cut -d / -f,
—
1

In our biweeklybudget .env, we would specify the database connection string that uses the “dockerhost” hosts
file entry, created by the ——add-host option:

"dockerhost" is added to /etc/hosts via the "--add-host® docker run option
DB_CONNSTRING=mysql+pymysqgl://USERNAME: PASSWORD@dockerhost :3306/DBNAME ?charset=ut £8mb4

26 Chapter 5. Contents

https://hub.docker.com/r/jantman/biweeklybudget/
https://github.com/krallin/tini
http://gunicorn.org/
https://github.com/jantman/biweeklybudget/blob/master/biweeklybudget/settings_example.py
https://github.com/jantman/biweeklybudget/blob/master/biweeklybudget/settings_example.py
https://github.com/jantman/biweeklybudget/blob/master/biweeklybudget/settings_example.py
https://docs.docker.com/engine/reference/commandline/run/#add-entries-to-container-hosts-file-add-host

biweeklybudget Documentation, Release 0.4.0

So using that, we could run biweeklybudget listening on port 8080 and using our host’s MySQL server (on port 3306):

docker run —--name biweeklybudget --env-file biweeklybudget.env \
—-—add-host="dockerhost:$ (ip -4 addr show scope global dev docker0 | grep inet | awk '
—{print $2}' | cut -d / -f 1)" \

-p 8080:80 jantman/biweeklybudget:latest

You may need to adjust those commands depending on your operating system, Docker networking mode, and MySQL
server.

Settings Module Example

If you need to provide biweeklybudget with more complicated configuration, this is still possible via a Python set-
tings module. The easiest way to inject one into the Docker image is to mount a python module directly into the
biweeklybudget package directory. Assuming you have a custom settings module on your local machine at /opt/
biweeklybudget—-settings.py, you would run the container as shown below to mount the custom settings
module into the container and use it. Note that this example assumes using MySQL in another container; adjust as
necessary if you are using MySQL running on the Docker host:

docker run —--name biweeklybudget —-e SETTINGS_MODULE=biweeklybudget.mysettings \

-v /opt/biweeklybudget-settings.py:/app/lib/python3.6/site-packages/biweeklybudget/
—mysettings.py \

-p 8080:80 —--1link mysql Jjantman/biweeklybudget:latest

Note on Locales

biweeklybudget uses Python’s locale module to format currency. This requires an appropriate locale installed on the
system. The docker image distributed for this package only includes the en_US . UTF -8 locale. If you need a different
one, please cut a pull request against docker_build.py.

Running ofxgetter in Docker

If you wish to use the ofxgetter script inside the Docker container, some special settings are needed:
1. You must mount the statement save path (STATEMENTS_SAVE_PATH) into the container.
2. You must mount the Vault token file path (TOKEN_PATH) into the container.
3. You must set either the VAULT_ADDR environment variable, or the VAULT ADDR setting.

As an example, for using ofxgetter with STATEMENTS_SAVE_PATH in your settings file set to /statements and
TOKEN_PATH setto /. token (root paths used here for simplicity in the example), you would add to your docker
run command:

-v /statements:/statements \
-v /.token:/.token

Assuming your container was running with ——name biweeklybudget, you could run ofxgetter (e.g. via cron) as:

We run explicitly in the statements directory so that if ofxgetter encounters an error when using a
ScreenScraper class, the screenshots and HTML output will be saved to the host filesystem.

5.3. Docker 27

https://docs.docker.com/engine/reference/commandline/run/#mount-volume--v-read-only
https://docs.python.org/3.6/library/locale.html

biweeklybudget Documentation, Release 0.4.0

Flask Application

Running

1. First, setup your environment per Getting Started - Setup.
2. export FLASK_APP="biweeklybudget.flaskapp.app"
3. flask —-help for information on usage:

* Run App: flask run

* Run with debug/reload: flask rundev

To run the app against the acceptance test database, use: DB_CONNSTRING='mysqgl+pymysqgl://
budgetTester@127.0.0.1:3306/budgettest?charset=utf8mb4' flask run

By default, Flask will only bind to localhost. If you want to bind to all interfaces, you can add ——host=0.0.0.0to
the flask run commands. Please be aware of the implications of this (see “Security”, below).

If you wish to run the flask app in a multi-process/thread/worker WSGI container, be sure that you run the initdb
entrypoint before starting the workers. Otherwise, it’s likely that all workers will attempt to create the database tables
or run migrations at the same time, and fail.

Security

This code hasn’t been audited. It might have SQL injection vulnerabilities in it. It might dump your bank account
details in HTML comments. Anything is possible!

To put it succinctly, this was written to be used by me, and me only. It was written with the assumption that anyone
who can possibly access any of the application at all, whether in a browser or locally, is authorized to view and/or
edit anything and everything related to the application (configuration, everything in the database, everything in Vault
if it’s being used). If you even think about making this accessible to anything other than localhost on a computer you
physically own, it’s entirely up to you how you secure it, but make sure you do it really well.

OFX Transaction Downloading

biweeklybudget has the ability to download OFX transaction data from your financial institutions, either manually or
automatically (via an external command scheduler such as cron).

There are two overall methods of downloading transaction data; for banks that support the OFX protocol, statement
data can be downloaded using HTTP only, via the ofxclient project (note our requirements file specifies the upstream
of PR #37, which includes a fix for Discover credit cards). For banks that do not support the OFX protocol and require
you to use their website to download OFX format statements, biweeklybudget provides a base ScreenScraper
class that can be used to develop a selenium-based tool to automate logging in to your bank’s site and downloading
the OFX file.

In order to use either of these methods, you must have an instance of Hashicorp Vault running and have your login
credentials stored in it.

Important Note on Transaction Downloading

biweeklybudget includes support for automatically downloading transaction data from your bank. Credentials are
stored in an instance of Hashicorp Vault, as that is a project the author has familiarity with, and was chosen as the
most secure way of storing and retrieving secrets non-interactively. Please keep in mind that it is your decision and

28 Chapter 5. Contents

http://ofx.net/
https://github.com/captin411/ofxclient
https://github.com/captin411/ofxclient/pull/37
http://selenium-python.readthedocs.io/
https://www.vaultproject.io/
https://www.vaultproject.io/

biweeklybudget Documentation, Release 0.4.0

your decision alone how secure your banking credentials are kept. What is considered acceptable to the author of this
program may not be acceptably secure for others; it is your sole responsibility to understand the security and privacy
implications of this program as well as Vault, and to understand the risks of storing your banking credentials in this
way.

Also note that biweeklybudget includes a base class (ScreenScraper) intended to simplify developing selenium-
based browser automation to log in to financial institution websites and download your transactions. Many banks and
other financial institutions have terms of service that explicitly forbid automated or programmatic use of their websites.
As such, it is up to you as the user of this software to determine your bank’s policy and abide by it. I provide a base
class to help in writing automated download tooling if your institution allows it, but I cannot and will not distribute
institution-specific download tooling.

ofxgetter entrypoint

This package provides an ofxgetter command line entrypoint that can be used to download OFX statements for
one or all Accounts that are appropriately configured. The script used for this provides exit codes and logging suitable
for use via cron (it exits non-zero if any accounts failed, and unless options are provided to increase verbosity, only
outputs the number of accounts successfully downloaded as well as any errors).

Vault Setup

Configuring and running Vault is outside the scope of this document. Once you have a Vault installation running
and appropriately secured (you shouldn’t be using the dev server unless you want to lose all your data every time
you reboot) and have given biweeklybudget access to a valid token stored in a file somewhere, you’ll need to en-
sure that your username and password data is stored in Vault in the proper format (username and password
keys). If you happen to use LastPass to store your passwords, you may find my lastpass2vault.py helpful; run it as
./lastpass2vault.py -vv -f PATH_TO_VAULT_TOKEN LASTPASS_USERNAME and it will copy all of
your credentials from LastPass to Vault, preserving the folder structure.

Configuring Accounts for Downloading with ofxclient

1. Use the ofxclient CLI to configure and test your account.
2. Put your creds in Vault.
3. Migrate ~/ofxclient.ini to JSON, add it to your Account.

A working configuration for a Bank account might look something like this:

{
"routing number": "012345678",
"account_type": "CHECKING",
"description": "Checking",
"number": "111222333",
"local_id": "f0al4074d33cdf83b4a099%c322dbe2fel9680cal’719425b33de5022",
"institution": {
"client_args": {
"app_version": "2200",
"app_id": "QWIN",
"ofx version": "103",
"id": "£87217350cc341e2ba7407cf99dcdede"
}!
"description": "MyBank",
"url": "https://ofx.MyBank.com",
"local_id": "e51fb78£88580alc2e3bb650bd59495384388abda8796c9bf06dct",

5.5. OFX Transaction Downloading 29

http://selenium-python.readthedocs.io/
https://www.lastpass.com/
https://github.com/jantman/misc-scripts/blob/master/lastpass2vault.py

biweeklybudget Documentation, Release 0.4.0

"broker_id": "",
"org" B IIORG ",
"id": "98765"

Configuring Accounts for Downloading with Selenium

In your customization package <_getting_started.customization>, subclass ScreenScraper. Override
the constructor to take whatever keyword arguments are required, and add those to your account’s
ofxgetter_config_json as shown below. :py:class:~biweeklybudget.ofxgetter.OfxGetter® will instantiate the
class passing it the specified keyword arguments in addition to username, password and savedir keyword argu-
ments. savedir is the directory under STATEMENTS _SAVE_PATH where the account’s OFX statements should be
saved. After instantiating the class, ofxgetter will call the class’s run () method with no arguments, and expect
to receive an OFX statement string back.

If cookies are a concern, be aware that saving and loading cookies is broken in PhantomJS 2.x. If you need to
persist cookies across sessions, look into the ScreenScraper class’ load_cookies () and save_cookies ()
methods.

"class_name": "MyScraper",
"module_name": "budget_ customization.myscraper",
"institution": {},
"kwargs": {
"acct_num": "1234"

Here’s a simple, contrived example of such a class:

import logging

import time

import codecs

from datetime import datetime

from selenium.common.exceptions import NoSuchElementException
from biweeklybudget.screenscraper import ScreenScraper
logger = logging.getLogger (__ name_)

suppress selenium logging

selenium_log = logging.getLogger ("selenium")
selenium_log.setLevel (logging.WARNING)
selenium_log.propagate = True

class MyScraper (ScreenScraper) :

def __init__(self, username, password, savedir='./',
acct_num=None, screenshot=False):
wn
:param username: username
:type username: str
:param password: password

30 Chapter 5. Contents

https://github.com/ariya/phantomjs/issues/13115

biweeklybudget Documentation, Release 0.4.0

:type password: str

:param savedir: directory to save OFX 1in

:type savedir: str

:param acct_num: last 4 of account number, as shown on homepage

:type acct_num: str
mmn

super (MyScraper, self).__init__ (

savedir=savedir, screenshot=screenshot

)

self.browser = self.get_browser ('phantomijs")

self.username = username
self.password = password
self.acct_num = acct_num

def run(self):

"mrm download the transactions,

logger.debug ("running,

logger.info ('Logging in. ..

try:

self.do_login(self.username,
logger.info ('Logged in;

time.sleep(2)

self.do_screenshot ()
self.select_account ()
act = self.get_account_activity ()

except Exception:

self.error_screenshot ()

raise
return act

def do_login(self, username,
self.get_page ('http://example.com")

password) :

return file path on disk """
username={u}".format (u=self.username))

self.password)
sleeping 2s to stabilize')

raise NotImplementedError ("login to your bank here")

def select_account (self):

self.get_page('http://example.com')

logger.debug ('Finding account link...")
link = self.browser.find_element_by_xpath (

'//alcontains (text (),

)

logger.debug ('Clicking account link:

link.click ()

self.wait_for_ajax_load()

self.do_screenshot ()

def get_account_activity (self):
some bank-specific stuff here,
post_list = self.xhr_post_urlencoded(
post_url, post_data,

)

self.acct_num

¢s', link)

then we POST to get OFX

headers=post_headers

if not post_list.startswith ('OFXHEADER') :

self.error_screenshot ()
with codecs.open('result',
fh.write (post_list)

'utf-8') as fh:

raise SystemExit ("Got non-OFX response")

return post_list

5.5. OFX Transaction Downloading

31

biweeklybudget Documentation, Release 0.4.0

Getting Help

Bugs and Feature Requests

Bug reports and feature requests are happily accepted via the GitHub Issue Tracker. Pull requests are welcome. Issues
that don’t have an accompanying pull request will be worked on as my time and priority allows.

Development

To install for development:
1. Fork the biweeklybudget repository on GitHub

2. Create a new branch off of